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An important theorem due to Truemper characterizes the graphs whose edges can be
labeled so that all chordless cycles have prescribed parities. This theorem has proven to
be an essential tool in the study of various objects like balanced matrices, graphs with no
even length chordless cycle and graphs with no odd length chordless cycle with at least five
edges. In this paper we prove this theorem in a novel and elementary way and derive some
of its consequences. In particular, we show an easy way to obtain Tutte’s characterization
of regular matrices.

1. Truemper’s theorem

Let § be a 0,1 vector indexed by the chordless cycles of an undirected graph
G=(V, E). In this paper, we consider the following system of linear equations
over GF(2):

(1) {(C)=Pc mod 2 for every chordless cycle C of G,

where [(C):=3_,c ey l(€)- A 0,1 labeling ! of the edges of G satisfying (1) is
called a B-balancing of G. If G admits a B-balancing it is called 3-balanceable.

We denote by B the restriction of the vector 8 to the chordless cycles
of an induced subgraph H of G. In [14], Truemper showed the following
theorem:
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Theorem 1.1. A graph G is B-balanceable if and only if every jnduc}eld
subgraph H that is a 3-path configuration or a wheel (Figure 1.) is 5% -
balanceable.

P, P2§ P3
O"‘
y
a 3PC(x,y) a 3PC(xyz,u) a 3PC(xyz,uvw) a wheel

Fig. 1. 3-path configurations and a wheel

There are three types of 3-path configurations (3PC’s): a 3PC(z,y),
where node z and node y are connected by three internally disjoint paths
Py, P, and Ps; a 3PC(zyz,u), where zyz is a triangle and P, P, and P3 are
three internally disjoint paths with endnodes z, y and z respectively and
a common endnode u; and a 3PC(zyz,uvw), which consists of two node
disjoint triangles zyz and uvw and three disjoint paths P;, P, and P3 with
endnodes z and u, y and v, and z and w respectively. In all three cases the
nodes of P;UP;, i+# j, must induce a chordless cycle. This implies that all
paths Py, P, P; of a 3PC(z,y) have length greater than one. A wheel is a
graph (C,z) consisting of a chordless cycle C and a node 2 ¢V (C) that has
at least three neighbors on C. We call C the rim and z the center of the
wheel (C,z). Note that a 3PC(zyz,u) may also be a wheel.

From standard linear algebra it follows that the system of linear equations
(1) is infeasible if and only if

(2) G contains chordless cycles Ci,...,Cy such that C1A---AC, = 0 and
Be,+-+Bc,=1mod 2.

So, (2) provides a co-NP characterization of 3-balanceability of G. Theo-
rem 1.1 states that the chordless cycles of G satisfying (2) can be chosen so

that their support graph is a 3-path configuration or a wheel, which subs-
tantially sharpens (2).
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In this paper, we give an alternative simple proof of Theorem 1.1 and
we highlight its importance by deriving some well known theorems, such as
Tutte’s characterization of regular matrices, the characterization of balan-
ceable matrices, and of even, odd and universally signable graphs.

A derivation of Tutte’s characterization of regular matroids from The-
orem 1.1 has already been given by Truemper in [13]. In fact, in [14], he
derived from Theorem 1.1 Reid’s characterization of ternary matroids [1],
[11], which generalizes Tutte’s result. Our derivation of Tutte’s result is more
direct. Truemper’s theorem also played a role in the proof of another exten-
sion of Tutte’s result, namely Geelen’s characterization of the symmetric
0,£1 matrices in which all principal submatrices have 0,+1 determinants
[9].

Our proof of Theorem 1.1 is divided into two parts. First we derive two
graph-theoretic lemmas on the occurrence of 3-path configurations and whe-
els. Next these results are used in the second part of the proof, which is more
explicitly concerned with the linear algebra involved in solving the linear
system (1). Throughout the paper, N(v) will denote the set of neighbors of
node v.

Lemma 1.1. Let C be a chordless cycle of G with G # C such that V(C)
contains no Ky cutset of G. Then C' is contained in a 3-path configuration
or a wheel in G.

Proof. Let G and C form a counterexample. First assume that 7 is not a
triangle. Choose two nonadjacent nodes ©* and w* in €' and a w*w-path
P=w*u,...,w,w* whose intermediate nodes and edges are G\ V(') such
that P is as short as possible. The existence of such a pair of nodes u* and
w* follows because G # C and V(C') contains no Ky cutset. As €' is not
contained in a 3-path configuration or a wheel, u and v are distinct. For the
same reason, both U := N(u)NV(C) and W = N(uw)nV(C) consist of a
single node or two adjacent nodes.

Let Y be the set of nodes in C that have a neighbor in V(P)\{u®, u,w,w*}.
Y is nonempty as otherwise P U ' induces a 3-path configuration (if
UNW=0) or a wheel (if U N W # §). By the minimality of P, the no-
des of YUU arc pairwise adjacent. Hence, [YUU| < 2. So, as u* €Y, we have
that |[Y[=|U\Y|=1 and, by symmetry, also |[W\Y|= 1. But then CUP
induces a wheel with the single node in Y as its center, a contradiction.

So C=cy,eg,¢y is a triangle. As G # C and as {¢), ¢y} and {e1,05) are
no cutsets of G, the edge cyey is not an edge cutset of G\ {e}. Henee, there
exists a chordless cycle C' in G\ {c) } containing cyey. As {ey e} is not a K,
cutset, there exists for each such C" a ¢yz-path Q in G\ V((") such that =
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is adjacent to a node in V/(C1)\{c2,c3}. Now select C’ and Q such that Q
is as short as possible. As CUC’ is not a wheel, N(c1)NV(C')={cz,c3}; in
particular,  #c;. By the minimality of Q, z has at most two neighbors in C"
and if it has two, they are adjacent. There exists a y €V (Q)\ {¢1} adjacent
to ¢g or c3, because otherwise C UC’UQ would be a 3-path configuration
or, in case z is adjacent to ¢y or c3, a wheel. Choose such y closest to c;
in Q and assume that y is adjacent to cz. Any cics-path with nodes in
(V(Q)UV(C")\{ca} and not using edge cjcs contains y, so a shortest such
path induces with C a wheel with center c2, a contradiction. ]

For e€ E(G), G¢ denotes the graph whose node set represents the chord-
less cycles of G containing e and whose edges are the pairs C;,C5 in V(G¢)
for which there exists a 3-path configuration or a wheel containing both C;
and Cs.

Lemma 1.2. If e=uv is not a Ky cutset of G, G¢ is connected.

Proof. Assume not. Choose two chordless cycles C; and C5 of G in different
components of G¢ with the distance d(C1,C2) of V(C1)\{u,v} and V(Cy)\
{u,v} in G\ {u,v} minimal and, subject to this, |V (C1) UV (Cs)| minimal.
Choose an st-path P in C; \{e} with V(P)NV(Cq) = {s,t}. Let Q be the
st-path in Cy through e.

We first prove PUQ =C4. If not, both V/(C)UV (P)uV(Q) and V(Cs)U
V(P)UV(Q) are properly contained in V(C;)UV(C2). Let C be a chordless
cycle through e with nodes in V(P)UV(Q). Then C#C1, C+#Cs, d(C1,C) =
d(C,C2)=0, and |[V(C)UV(Cy)| and [V(C1)UV(C)| are both smaller than
[V(C1)UV(Cy)|. Now C and Cz or C; and C contradict the choice of C4
and Cy. So PUQR=C;.

Let T be a shortest path from V(C1)\{u,v} to V(C)\{u,v} in G\{u,v}.
(Note that, T' may be a single node in V(C1)NV{(C2)\{u,v}.) Cy contains
no K, cutset of the graph G’ induced by Cy, Cy and T.. Hence by Lemma
1.1, G’ contains a chordless cycle C; adjacent to C; in G€. V(C1)\V(C}) is
obviously nonempty, so by the choice of C; and Cs, d(C1,Cs) = d(é’l, Cy)=
As PUQ=C}, all intermediate nodes of @ have degree 2 in G, so Cy contams
Q. As C1 # C1, V(C1)UV(Cy) is properly contained in V(Cl) UV (Ca),
contradicting the choice of Cy and Cj. |

The rest of the proof of Theorem 1.1 is mainly algebraic, concerning the
solvability of the linear system (1). For this we need two easy facts from the
linear algebra over GF'(2) of circuits and cuts in a graph. By xs(v) we will
denote the characteristic vector of the subset §(U) of E(G) consisting of the
edges leaving node set U CV(G).
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Lemma 1.3. If | is a B-balancing and I' a 0,1 labeling of the edges of G,
then ' is a (3-balancing of G if and only if I = { + xs(1y) mod 2 for some
UCV(G).

Proof. I is a B-balancing of G if and only if v := [+’ satisfies v(C) =0 mod 2
for each chordless cycle C in G. As each cycle of G is the symmetric difference
of chordless cycles in G, the latter is equivalent to ©¥(C) =0 mod 2 for each
cycle C of G. Now it is easy to see that this is equivalent to v = x4y for
some U CV(G). |

Corollary 1.1. If G’ is an induced subgraph of a 3-balanceable graph G,
then each ﬁG’-ba]ancing of G' extends to a (3-balancing of G.

Proof. Let | be a B-balancing of G and I’ be a 8% -balancing of G'. Then the
restriction I¢ of I to G’ is a A% -balancing. By Lemma 1.3, ' =[¢' + X600 (1)
for some U C V(G') C V(G). Hence, again by Lemma 1.3, the extension
U+ X1y of ' is a B-balancing of G. (Sums taken modulo 2). |

Assume G is connected and contains a clique cutset K; with ¢ nodes and
let G|,GY,...,G), be the components of the subgraph induced by V(G)\ K.
The blocks of G are the subgraphs G; induced by V(G;)UKy, i=1,...,n.

Corollary 1.2. If G contains a K, cutset, then G is 3-balanceable if and
only if each block G; is 3%i-balanceable.

Proof. The “only if” part is obvious. We prove the Lif” statement. Fix a
A% balancing [ of the clique K;. By Corollary 1.1, in each block G; we may
extend [ to a B%-balancing of Gy;. As each chordless cycle lies entirely in
one of the blocks, we thus get a -balancing of G. |

Proof of Theorem 1.1. The necessity of the condition is obvious. We
prove the sufficiency by induction on V(G). Let uwv be an edge of G. By
Corollary 1.2, we may assume that G is connected and has no K, or K,
cutset.

Fix a A\ balancing of G\ {u}. By Corollary 1.1, we may extend its
restriction to G\ {u,v} to a A L halancing of G\ {v}. Thus we obtained
a labeling of all the edges except wv. Assigning label O to uv, we obtain a
labeling, £ say, of L(G). We call a chordless circuit C' correctif #(C) = ff¢- mod
2; otherwise we call C incorrect. All chordless cycles €7 not containing uwv
are correct. Furthermore at least one chordless cycle € containing uv is
incorrect (else £ is a f-balancing of G) and at least one chordless cycle ()
is correct (else by resetting £(uv) to 1, we have a f#-balancing of (7).
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As {u,v} is not a K3 cutset of G, by Lemma 1.2, we may choose Ch
and Cy to be adjacent in G“’. Hence there is a 3-path configuration or
a wheel G’ containing both C; and Cj. Since every edge of G’ (and in
particular uv) is in exactly two chordless cycles of G', Cy is the only incorrect
chordless cycle of G'. So, denoting the set of chordless cycles in G' by c,
we get Y pec Ao =1+ Loee Leen(c) HE) =1+ Leer(cr) 2ceer c5e €)=
143 e p(gr) 24(e)=1 mod 2. Hence, by (2), G is not 3% -balanceable.  §

2. Even and odd-signable graphs

A hole is a chordless cycle of length greater than three. Graphs with no odd
holes are related to perfect graphs since the famous strong perfect graph con-
jecture states that a graph G is perfect if and only if G and its complement
contain no odd hole.

A graph G is even-signable if G is B-balanceable for the vector fo=1 if
C is a triangle of G and B¢ =0 if C is a hole of G. Even-signable graphs
were introduced in [7] and they generalize graphs with no odd holes, for
G contains no odd hole if and only if G is even-signable with all labels
equal to one. By checking which 3-path configurations and wheel are not
even-signable, we get from Theorem 1.1 the following characterization of
even-signable graphs.

Theorem 2.2. A graph is even-signable if and only if it contains no genuine
3PC(zyz,u) and no odd wheel.

Here, a 3PC(zyz,u) is genuineif in all paths P;, Ps, Ps has length greater
than one, and a wheel is odd if it contains an odd number of triangles.

Theorem 1.1 might turn out useful in understanding graphs with no odd
holes. That this is not inconceivable could be argued from the fact that in [4]
a polynomial time recognition algorithm is given to test if a graph contains
no even hole and that heavily relies on Theorem 2.3 below. We call a graph
odd-signable if it is G-balanceable for the vector B of all ones. Note that a

graph has no even holes if and only if it is odd-signable with all labels equal
to one.

Theorem 2.3. A graph is odd-signable if and only if it contains no
3PC(z,y), no 3PC(zyz,uvw), and no even wheel.

Here, a wheel (C,z) is even if z has an even number of neighbors on C.
(Note that a wheel may be both even and odd and that K} is a wheel that is
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neither even nor odd). Theorem 2.3 follows immediately from Theorem 1.1
by checking which 3-path configurations and wheels are not odd-signable.

The recognition problem for both even-signable and odd-signable graphs
is still open. In [5] both problems are solved for graphs that do not contain
a cap as induced subgraph. (A cap is a hole H plus a node that has two
neighbors in H and these neighbors are adjacent).

3. Universally signable graphs

Let G be a graph that is #-balanced for all 0,1 vectors f that have an entry
of 1 corresponding to the triangles of G. Such a graph we call universally
signable. Clearly triangulated graphs, i.e. graphs that do not contain a hole,
are universally signable. In [6] these graphs are shown to generalize many
of the structural properties of triangulated graphs. From Theorem 1.1 it
follows that G is universally signable if and only if no hole of G' belongs to
a 3-path configuration or a wheel. Hence we get the following result.

Theorem 3.4. A graph G is universally signable if and only if G contains
no 3-path configuration and no wheel that is distinct from K.

As a consequence of Theorem 3.4 and Lemma 1.1 we have the following
decomposition theorem.

Theorem 3.5. A connected universally signable graph that is not a hole
and is not a triangulated graph contains a K| or Ky cutset.

It was the above decomposition theorem that prompted us to look for a
new proof for Theorem 1.1.

4. a-balanced graphs, regular and balanceable matrices

Let a be a vector with entries in {0, 1,2,3} indexed by the chordless eyeles of
a graph G. A graph (7 is «-balanceable if its edges can be labeled with labels
—1 and +1 so that for every chordless cycle (7 of G 1(C) = e mod 4. Such a
labeling is an «-balancing of G. As we shall see there is a strong relationship
between «- and f#-balanceability. Tn fact, Truemper proved Theorem 1.1 (on
f3-balanceability) by first proving Theoremn 4.6 below (on a-balanceablility)
and then showing that the two statements are equivalent.

Theorem 4.6. A graph is c-balanceable if and only if - is even for all even
length chordless cycles C and odd otherwise ancd every induced subgraph H
of G that is a 3-path configuration or a wheel is o -balanceable,
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To see that the two theorems are equivalent indeed, note tha.Lt an a-
balancing of G with labels of 1 and —1, is implied by a S-balancing with
Be = EQZ%E—@M mod 2, by replacing the 0’s by —1’s. Similarly the g-

balancing of G with labels of 0 and 1 is implied by an c-balancing with
ac:=2Bc+|E(C)| mod 4, by replacing the —1’s by 0’s.

Balanceable and balanced matrices

The bipartite graph G(A) of a matrix A has the row and column sets of A
as color classes and an edge ij with label [4(i5) :=a;; for each nonzero entry
a;j of A. A 0,£1 matrix A is balanced if G(A) is a-balanced for the vector
of all zeroes. A 0,1 matrix A is balanceable if G(A) is a-balanceable for the
vector o of all zeroes. From now on, signing means replacing some of the 1's
with —1's. By straightforward checking, we can now derive from Theorem
4.6 the following characterization of balanceable matrices.

Theorem 4.7. A 0,1 matrix A is balanceable if and only if G(A) contains
no wheel with an odd number of spokes and no 3PC(z,y) such that z and
y belong to opposite sides of the bipartition.

In [3] a polynomial algorithm is given to recognize if a matrix is ba-
lanceable or balanced. Balanced 0,41 matrices have interesting polyhedral
properties and have recently been the subject of several investigations, see
[8] for a survey.

By the same argument used to obtain Theorem 4.6 from Theorem 1.1,
we get from Lemma 1.3 the following result.

Lemma 4.4. (Camion [2]) The balanced signings of a balanceable graph
are unique up to multiplication of some rows and columns by —1.

Totally unimodular and regular matrices: A theorem of Tutte

A matrix is totally unimodular if all of its square submatrices have determi-
nant 0,+1. Consequently a totally unimodular matrix is a 0,+1 matrix. If

Ais a 0,41 matrix such that G(A) is a chordless cycle C, then det(A)=0 if

14(C)=0mod 4 and det(A) ==+2 if {4 (C) =2 mod 4. So, totally unimodular
matrices are balanced.

A 0,1 matrix is regular if it can be signed to be totally unimodular.
Clearly, regular matrices are balanceable. Moreover, as total unimodularity

is invariant under multiplication of rows and columns by -1, the following
lemma follows from Lemma 4.4.
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Lemma 4.5. Every balanced signing of a regular matrix is totally unimo-
dular.

To state the theorem of Tutte characterizing regular matrices, we need to
introduce the notion of pivoting a matrix: pivoting a matrix A on a nonzero
entry a;; yields the matrix B with entries defined as follows:

—Qx if k=1i,5=I

bri =14 Gkl if k=i,7#0lor k#1,j=I

akl — ai—jlailakj if ks£14,7#1.

Lemma 4.6. Let B be the result of pivoting A = [j Tb} on the nonzero
entry €. Then the following hold:

- y”
z D—etayT |’

i) B

ii) Pivoting B on —e yields A.

iil) If A is square, det(A)=edet(D —e lzyT) and det(B)=—edet(D).

iv) If e==£1, then the set of absolute values of the subdeterminants of A is
equal to the sct of absolute values of the subdeterminants of B.

1

Proof. i) and ii) are obvious from the definition of pivoting. As the matrix
T

[6 D—g”lu:y"'] follows from A by row operations, we get that det(A) =

edet(D — e tuy”). Combining this with ii), yields det(B) = —edet(D). So
iif) follows as well. Remains to prove iv); assume ¢ = +1. By ii) it follows
that it suffices to prove that if M is a square submatrix of A, then there
exists a subdeterminant of B with value +det(M). By taking transposes, if
necessary, we may assume that M contains e or is disjoint from the top row.
Morcover, we may delete from A all rows and columns that do not contain ¢
and do not intersect M. In other words, we may assume that M = A, M =)
or M =[x|D]. If M=A or M=D then, by i) and iii), the determinant of A
occurs, up to a sign, in B. If M =[x]D], then it can be turned into the the
submatrix [IIJ,[)——E"_I:I):(/T] of B by column operations. Hence, also in this
case the determinant of M occurs up to a sign in 13. B

We will pivot matrices both over the reals (B-pivoting) and over G 1(2)
(GF(2)-pivoting).
Lemma 4.7. Let A be a balanced signing of a 01 matrix A. Let I3 be
the result of GF(2)-pivoting A on an entry a,,. Then B-pivoting A on the

corresponding entry a;; yields a (not necessarily balanced!) (), 4 1 signing I3
of BB.
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Proof. As, obviously, B and B are congruent modulo 2, it sufﬁces to show
that B is a 0, +1 matrix. If not, then for some k#1and [#7, Gp— a,ZJ Qi 7
0,=+1. But, then the four entries @ij, Gil, Gkj, and Gk make up an unbalanced

submatrix of 4, a contradiction. 1

Lemma 4.8. Every nonregular 0,1 matrix can be GF (2)-pivoted into a
nonbalanceable matrix.

Proof. Let A be a counterexample. We may assume that A is minimally
nonregular (minimal under taking submatrices and pivoting). We first prove
the following:

(x) Ifu and w are in different color classes of G(A), then w has degree 2 in
A\ {u}-

To prove this, let v be adjacent to u and different from w (as A is mini-
mally nonregular, v exists). Let B be the result of GF(2)-pivoting A on ay,.
B is also minimal nonregular and balanceable. Let B be a balanced signing
of B. Then as all proper submatrices of B are regular and all submatrices
of B are balanced, it follows from Lemma 4.5 that det(B) is the only sub-
determinant of B that is not 0,+1. Let A be the result of R-pivoting B on
buv; as B is balanced, by Lemma 4.7, Aisa signing of A. By Lemma 4.6, iii)
and iv), the only subdeterminant of A that is not 0,%1 is the determinant
of the submatrix A — {u,v} corresponding to G(A4)\ {u,v}. As A— {u,v}
is regular, and A —{u,v} is not totally unimodular, it follows from Lemma,
4.5 that A——{u,v} is not balanced. As all proper subdeterminants are 0,%£1,
G(A)\{u,v} is a chordless cycle. So, as v is not adjacent to w, (x) follows.

By (x), G(A) is 3-regular (each node w has a neighbor u). But now, again
by (), G(A) is the complete bipartite graph K33. As A is nonregular, this
is impossible. |

The next remark follows from the definition of pivoting.

Remark 4.1. Let B be the result of GF(2)-pivoting a 0,1 matrix 4 on
a;;=1. Then G(B) is obtained from G(A) by picking each pair k€ N (i)\{j},

L€ N(j)\{1}, adding edge kl if k and | are nonadjacent in G(A4) and removing
edge kl if k and [ are adjacent in G(A).

Tutte [16], [17] proves the following:

Theorem 4.8. A 0,1 matrix A is regular if and only if for no matrix B,

;)btaJZeg from A by GF(2)-pivoting, G(B) contains a wheel whose rim has
engt
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Proof. Assume A is a regular matrix and let A be a totally unimodular
signing of A. Let B be the result of R-pivoting A on a nonzero entry aU and
let B be the result of GF(2)-pivoting A on entry a;;. By Lemma 4.7, Bisa
signing of B and by Lemma 4.6 iv), B is totally unimodular. So B is regular
and the necessity follows.

For the sufficiency part, let A be a nonregular 0,1 matrix. Then, by
Lemma 4.8, we can GF(2)-pivot A into a nonbalanceable 0,1 matrix B. By
Theorem 4.7, G(B) contains a 3PC(z,y) where z and y belong to distinct
color classes, or a wheel (C,z) where z has an odd number, greater than
one, of neighbors in C.

If G(B) contains a 3PC(z,y), then, by Remark 4.1, we can perform a
series of GF(2)-pivots on B so that in the end all three zy-paths in the
3PC(z,y) have length three. When that is achieved, GF(2)-pivoting on an
entry corresponding to an edge incident with z, will yield a wheel whose rim
has length 6.

If G(B) contains a wheel (C,z) and z has an odd number of neighbors
in the rim C, then, by Remark 4.1, we can perform a series of GF(2)-
pivots on B so that all the sectors of (C,z), i.e. the subpaths of C' between
two consecutive neighbors of z, have length two. When all sectors do have
length 2 and z has more than three neighbors in C, a GF(2)-pivot on an
entry corresponding to an edge of C, yields a wheel (C’,z) such that z has
two less neighbors in C’ than in C. The new wheel (C’,z) has one sector
of length 4 now, but that can be reduced to length 2 by a single pivot, as
before. So ultimately, we will obtain a wheel whose rim has length 6. ]

Tutte’s original proof of the above theorem is quite difficult. A short,
self-contained proof can be found in [10]. In [12], a polynomial algorithm is
given to recognize if a matrix is regular or totally unimodular. For a faster
algorithm, see [15].
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